

CUNY's Laboratory for the Understanding of Music and Audio

Johanna Devaney

NEMISIG 2024

www.lumaa.info

Current Lab Members

Johanna Devaney Principal Investigator

Leo Burke-Rench Undergraduate Research Assistant

Enis Berk Çoban Graduate Research Assistant

Daniel McKemie Graduate Research Assistant

Rebecca Moranis Graduate Research Assistant

Alexander Morgan

Research Associate

Maren Rothfritz

Doctoral Student

Ji Yeoung Sim

Graduate Research Assistant

Stephen Spencer

Doctoral Student

Chunyu Yuan Graduate Research Assistant

Current Projects

- CoSoD (Collaborative Song Dataset)
- pyAMPACT (Automatic Music Performance Analysis and Comparison Toolkit)
- Incorporating Domain Knowledge into Deep Learning Models
 - Automatic Chord Estimation
 - Bioacoustics
- Analysis of Speech and Singing from People Living with Communication Disorders

CoSoD (Collaborative Song Dataset)

- 331 multi-artist collaborations from the 2010–2019 Billboard "Hot 100" year-end charts
- Currently Available Annotations
 - Formal sections
 - Artist information: Gender, Functional Role, Vocal Delivery
 - Automatically Estimated Features: fo
 - Annotated Mixing Features: Environment, Layering, Width
- Work-in-Progress Annotations
 - Note segmentation (to facilitate analysis with pyAMPACT tools)

Michèle Duguay Harvard University

Kate Mancey Harvard University Und

Leo Burke-Rench Undergraduate Research Assistant

 Reimplement of MATLAB-based Automatic Music Performance Analysis and Comparison Toolkit

Daniel McKemie Graduate Research Assistant

Alexander Morgan Research Associate

- pyAMPACT estimates a variety of performance parameters from the note-wise *f*₀ and power estimates
 - Pitch: perceived pitch, vibrato rate and depth, jitter, *f*₀ slope and curvature
 - Loudness: Perceived loudness, shimmer
 - Timbre: spectral centroid, slope, flatness, and flux,
- Note-level timing information is available from the symbolic-audio alignment
- Note-level performance data can be exported to either Humdrum's kern format or MEI

Daniel McKemie

Alexander Morgar

- pyAMPACT can also import score-event aligned harmonic annotations to Humdrum
- This works for underspecified symbolic representations (e.g., transcriptions) as well as full scores

	<pre><when absolute="00:00:10:087" data="#note_1" xml:id="when_1"></when></pre>
	<extdata></extdata>
<score></score>	<![CDATA[>{
<section></section>	"dur": 0.082721088.
<statt n="1"></statt>	······································
<layer> <note< td=""><td>"f0Vals":[414.45386767783316,414.84188220077607,417.119948592810</td></note<></layer>	"f0Vals":[414.45386767783316,414.84188220077607,417.119948592810
xml:id="note_1"	83,418./54889429111/,419.6/42/52/499052,419.8826912553/988,419.
oct="4"	60159061638382,418./3664891143341,418.4/48232/2/6629,41/.11096
accid.ges="s"	933439654,414.69842540645334,414.42229415989641],
pname="g"/>	
	"ppitch":419.67413863689859,
	"jitter":0.98992915209365406,
	"vibratoDepth":2.888632876544873,
	"vibratoRate":14.35546875,

Cecilia Beauchamp

High school research assistant

- pyAMPACT also facilitates multi-modal symbolic-audio analysis
 - Symbolic data is imported via music21
 - Unlike music21's tree representation, pyAMPACT represents symbolic data as a series of Pandas Dataframes that are more compatible with spectral representations of audio

Piano Roll

Spectrogram-like Mask (from Dan Ellis' note2mask)

Daniel McKemie Graduate Research Assistant

Alexander Morgan

Automatic Chord Estimation

- Multi-label pitch-class formulation ۲
 - Metrics that capture the overlap between pitch-classes ulletparticularly informative cases of root disagreement

- Loss functions that leverage the multi-class/multi-label structure ullet
- Incorporating domain knowledge from pedagogical texts
 - Art Music (Western Common Practice Tradition) ullet
 - Popular Music (Western Rock Music) ullet

Christof Weiß University of Würzburg

Chunyu Yuan Graduate Research Assistant

Rebecca Moranis Graduate Research Assistant

Ji Yeoung Sim

Bioacoustics

- Goal is to analyze large volumes of soundscape data from autonomous recording networks installed in Arctic North Slope Alaska
- Currently expanding supervised CNN-based model trained on the classes in the EDANSA to predict un/ under-labeled bird species
 - Experimenting with utility of codified domain knowledge in this task (such as the descriptions of bird sounds in World in Birds)
 - Evaluating the best way to model the domain knowledge with an LLM and provide this information to our existing supervised audio model

Meta

Enis Berk Çoban Graduate Research Assistan

Speech/Singing Analysis

- SingWell large-scale project assessing the benefit of group singing for people living with communications disorders (e.g., aphasia, Parkinson's, stuttering)
- Starting to examine which acoustic features estimated from speech and singing can be used to predict
 - stress levels, measured by salivary cortisol levels
 - quality of life ratings, provided by participants

 $SSHRC \equiv CRSH$

Former Undergraduate Research Assistant